β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase

نویسندگان

  • Quanle Xu
  • Fengjuan Liu
  • Peng Chen
  • Joseph M. Jez
  • Hari B. Krishnan
چکیده

Grass pea (Lathyrus sativus L.) is an important legume crop grown mainly in South Asia and Sub-Saharan Africa. This underutilized legume can withstand harsh environmental conditions including drought and flooding. During drought-induced famines, this protein-rich legume serves as a food source for poor farmers when other crops fail under harsh environmental conditions; however, its use is limited because of the presence of an endogenous neurotoxic nonprotein amino acid β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP). Long-term consumption of Lathyrus and β-ODAP is linked to lathyrism, which is a degenerative motor neuron syndrome. Pharmacological studies indicate that nutritional deficiencies in methionine and cysteine may aggravate the neurotoxicity of β-ODAP. The biosynthetic pathway leading to the production of β-ODAP is poorly understood, but is linked to sulfur metabolism. To date, only a limited number of studies have been conducted in grass pea on the sulfur assimilatory enzymes and how these enzymes regulate the biosynthesis of β-ODAP. Here, we review the current knowledge on the role of sulfur metabolism in grass pea and its contribution to β-ODAP biosynthesis. Unraveling the fundamental steps and regulation of β-ODAP biosynthesis in grass pea will be vital for the development of improved varieties of this underutilized legume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Detection Methods for Antinutritive Factor β-ODAP Present in Lathyrus sativus L. by High Pressure Liquid Chromatography and Thin Layer Chromatography.

Lathyrus sativus L. (Grass pea) is the source for cheap and nutritious food choice in drought and famine susceptible zones in greater part of North India and Africa. The non-protein amino acid β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP) has been known for decades for its potent neurotoxic effect, causing irreversible neurodegenerative disease "neurolathyrism", present in both seed and leaf ...

متن کامل

Grass pea consumption & present scenario of neurolathyrism in Maharashtra State of India

BACKGROUND & OBJECTIVES Neurolathyrism is a non progressive motor neuron disorder engendered by the prolonged over-consumption of Lathyrus sativus (grass pea) seeds which contain a neurotoxic amino acid, β-N oxalyl- L-α, β-diaminopropionic acid (β-ODAP). It is characterized by spastic paraparesis in the hind limbs. The present study was conducted in 105 households (HHs) of Gondia district in Ma...

متن کامل

L-Homoarginine Accumulation in Grass Pea (Lathyrus sativus L.) Dry Seeds. A Preliminary Survey

Grass pea (Lathyrus sativus L.) has great agronomic potential as grain and forage legume, and presently is considered as a model crop for sustainable agriculture. However, the development into an important food legume has been hindered by the presence of the neurotoxic amino acid β-N-Oxalyl-α, β-diaminopropionic acid (β-ODAP). Recent studies reported that homoarginine (Har) can counteract this ...

متن کامل

A Novel Potentiometric Sensor for Determination of Neurotoxin β-N-Oxalyl-L-α, β-Diaminopropionic Acid

A novel potentiometric sensor based on ionophore (Cd(NH2CH2CH2OCH2CH2OCH2CH2NH2)Ag3(CN)5) for the determination of β-N-oxalyl-L-α, β-diaminopropionic acid (ODAP) is developed. The ODAP-selective membrane sensor demonstrates high sensitivity and short response time. The detection limit of the ODAP-selective membrane sensor is about 2 × 10(-6) mol L (-1) and the response time is shorter than 6 s....

متن کامل

Plant toxin β-ODAP activates integrin β1 and focal adhesion: A critical pathway to cause neurolathyrism

Neurolathyrism is a unique neurodegeneration disease caused by β-N-oxalyl-L-α, β- diaminopropionic (β-ODAP) present in grass pea seed (Lathyrus stativus L.) and its pathogenetic mechanism is unclear. This issue has become a critical restriction to take full advantage of drought-tolerant grass pea as an elite germplasm resource under climate change. We found that, in a human glioma cell line, β-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017